Total Syntheses of Disorazoles A_1 and B_1 and Full Structural Elucidation of Disorazole B_1

Prasanth Reddy Nyalapatla Prof. Wipf Research Group University of Pittsburgh Literature Seminar, Nov 18, 2017

Disorazoles A_1 , B_1 and C_1

Nicolaou, K. C. et al. J. Am. Chem. Soc. **2017**, 139, 15636-15639. Wipf, P. et al. J. Am. Chem. Soc. **2004**, 126, 15346-15347.

- Family of 29 related macrocyclic polyketides
- Isolated in 1994 from fermentation broth of the gliding myxobacterium *Sorangium cellulosum*
- Disorazole A_1 was the major component
- Disorazole A₁, E and C₁ showed exceptional biological activities
- Disruption of microtubule polymerization

Jansen, R et al. *Liebigs Ann. Chem.* **1994**, 759–773. Wipf, P. et al. *Nat. Prod. Rep.* **2009**, *26*, 585–601.

11/19/2017

Antiproliferative activity of Disorazole A₁

IC ₅₀ in (nM)							
Cell Line	Origin	Disorazole A ₁	Epothilone B	Vinblastine			
A549	Human lung carcinoma	0.0023 ± 0.0005	0.26 ± 0.14	5.9 ± 0.5			
PC-3	Human prostate adenocarcinoma	0.0071 ± 0.0012	2.0 ± 0.3	0.82 ± 0.06			
SK-OV-3	Human ovary adenocarcinoma	0.0049 ± 0.0001	0.64 ± 0.07	1.4 ± 0.1			
A-498	Human kidney carcinoma	0.016 ± 0.004	4.3 ± 3.6	46 ± 12			
U-937	Human histiocytic lymphoma	0.002 ± 0.001	0.09 ± 0.01	0.43 ± 0.13			
K-562	Human myelogenous leukemia	0.006 ± 0.001	0.69 ± 0.03	8.7 ± 1.8			
KB-3.1	Human cervix carcinoma	0.0025 ± 0.0003	1.6 ± 0.6	8.6 ± 0.3			
KB-V1	Human cervix carcinoma (multi- drug resistant)	0.042 ± 0.008	0.57 ± 0.03	114 ± 31			
L929	Mouse fibroblasts	0.0038 ± 0.0002	1.3 ± 0.6	28 ± 7			
				5			

Wipf, P. et al. Nat. Prod. Rep. 2009, 26, 585-601.

Antiproliferative activity of Disorazole C₁

IC₅₀ in (nM)

Cell Line	Origin	Disorazole C ₁	Vincristine	Vinblastine			
A549	Human lung carcinoma	2.21 ± 0.23	21.62 ± 2.68	1.52 ± 0.09			
PC-3	Human prostate adenocarcinoma	1.57 ± 0.10	4.68 ± 0.29	0.86 ± 0.08			
MDA- MB-231	Human breast epithelial adenocarcinoma	3.53 ± 0.19	7.16 ± 0.37	1.34 ± 0.21			
2008	Human ovarian carcinoma	1.91 ± 0.23	21.81 ± 2.92	2.24 ± 0.16			
Quiescent WI-38	Normal lung fibroblast	>100	N/D	>100			
HCT-116 WT	Human colorectal carcinoma	1.09± 0.41	5.62 ± 0.33	1.40 ± 0.07			
HCT-116 p53 -/-	Human colorectal carcinoma	2.25 ± 0.71	5.42 ± 0.47	2.17 ± 0.35			
DC3F WT	Chinese hamster lung cancer fibroblasts	5.55	17.53				
VCRD-5L	Chinese hamster lung cancer fibroblasts (multi-drug-resistant)	6.77	N/A	6			
Wipf, P. et al. Nat. Prod. Rep. 2009, 26, 585–601.							

Disorazole C₁ SAR studies

Disorazole $C_1(3)$

Wipf, P. et al. Nat. Prod. Rep. 2009, 26, 585-601.

Enantioselective total synthesis of Disorazole C₁

- Meyer's group partially synthesized in 2000
- First successful total synthesis of (3) was achieved by Wipf group in 2004
- In 20 linear steps and 1.5% overall yield
- Hoffmann group also synthesized northern hemisphere of disorazole A₁ and D₁

Wipf, P. et al. Nat. Prod. Rep. 2009, 26, 585–601.

Prasanth Nyalapatla @ Wipf Group

Page 8 of 28

Wipf's oxazole fragment synthesis

Wipf, P. et al. J. Am. Chem. Soc. **2004**, *126*, 15346-15347. Wipf, P. et al. Nat. Prod. Rep. **2009**, *26*, 585–601.

10

Page 10 of 28

Wipf's enyne fragment synthesis

Wipf, P. et al. J. Am. Chem. Soc. 2004, 126, 15346-15347. Wipf, P. et al. Nat. Prod. Rep. 2009, 26, 585–601.

Prasanth Nyalapatla @ Wipf Group

Page 11 of 28

11/19/2017

Wipf's total synthesis of disorazole C₁

Wipf, P. et al. J. Am. Chem. Soc. 2004, 126, 15346-15347.

Wipf's retrosynthetic analysis of (-)- CP_2 -disorazole $C_1(31)$

Hoveyda's approach for the total synthesis of disorazole C₁

Hoveyda, A. H et al. J. Am. Chem. Soc. 2014, 136, 16136-16139.

Hulme's alkyne metathesis strategy for the total synthesis of disorazole C_1

Hulme, A. N. et al. Angew. Chem. Int. Ed. 2015, 54, 7086-7090.

Total synthesis of disorazole A_1 and B_1 and full structural elucidation of disorazole B1

Nicolaou, K. C. et al. J. Am. Chem. Soc. 2017, 139, 15636-15639.

Nicolaou, K. C. et al. J. Am. Chem. Soc. 2017, 139, 15636-15639.

Synthesis of vinyl boronic acid 43 and iodide 46 cont'd

Nicolaou, K. C. et al. J. Am. Chem. Soc. 2017, 139, 15636-15639.

Synthesis of vinyl bromide fragment 44 cont'd

Wipf, P. et al. Org. Lett. **2000**, *2*, 1165-1168. Nicolaou, K. C. et al. J. Am. Chem. Soc. **2017**, *139*, 15636-15639.

11/19/2017

11/19/2017

Conclusion

- First total syntheses of disorazoles A₁ and B₁
- Full structural assignment of disorazole B₁
- Sharpless epoxidation / enzymatic kinetic resolution
- Series of coupling reactions

Thank you Prof. Peter Wipf Thanks to Prof. Wipf Research Group